References

Farbrother JE, Kirov G, Owen MJ, Guggenheim JA. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest Ophthalmol Vis Sci. 2004; 45: 2873–2878.
Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002; 43: 3633–3640.
Gwiazda J, Thorn F, Bauer J, Held R. Emmetropization and the Progression of Manifest Refraction in Children Followed From Infancy to Puberty. Oxford, Royaume-Uni: Pergamon Press; 1993.
Wildsoet CF. Active emmetropization: evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol Opt. 1997; 17: 279–290.
Breslin KM, O’Donoghue L, Saunders KJ. A prospective study of spherical refractive error and ocular components among Northern Irish schoolchildren (the NICER study). Invest Ophthalmol Vis Sci. 2013; 54: 4843–4850.
Morgan I, Rose K. How genetic is school myopia? Prog Retinal Eye Res. 2005; 24: 1–38.
Mutti DO, Hayes JR, Mitchell GL, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007; 48: 2510–2519.
Jones-Jordan LA, Sinnott LT, Manny RE, et al. Early childhood refractive error and parental history of myopia as predictors of myopia. Invest Ophthalmol Vis Sci. 2010; 51: 115–121.
McCullough SJ, O’Donoghue L, Saunders KJ. Six year refractive change among white children and young adults: evidence for significant increase in myopia among white UK children. PLoS One. 2016; 11: e0146332.
Zadnik K, Sinnott LT, Cotter SA, et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol. 2015; 133: 683–689.
McBrien NA, Millodot M. A biometric investigation of late onset myopic eyes. Acta Ophthalmologica. 1987; 65: 461–468.
Jiang BC. Parameters of accommodative and vergence systems and the development of late-onset myopia. Invest Ophthalmol Vis Sci. 1995; 36: 1737–1742.
Price H, Allen PM, Radhakrishnan H, et al. The Cambridge Anti-myopia Study: variables associated with myopia progression. Optom Vis Sci. 2013; 90: 1274–1283.
Sankaridurg PR, Holden BA. Practical applications to modify and control the development of ametropia. Eye. 2014; 28: 134–141.
Chua SY, Sabanayagam C, Cheung YB, et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol Opt. 2016; 36: 388–394.
Jones-Jordan LA, Sinnott LT, Graham ND, et al. The contributions of near work and outdoor activity to the correlation between siblings in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study. Invest Ophthalmol Vis Sci. 2014; 55: 6333–6339.
Wu LJ, Wang YX, You QS, et al. Risk factors of myopic shift among primary school children in Beijing, China: a prospective study. Int J Med Sci. 2015; 12: 633–638.
Ip JM, Huynh SC, Robaei D, et al. Ethnic differences in refraction and ocular biometry in a population-based sample of 11-15-year-old Australian children. Eye. 2008; 22: 649–656.
Rudnicka AR, Owen CG, Nightingale CM, Cook DG, Whincup PH. Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: the Child Heart and Health Study in England (CHASE). Invest Ophthalmol Vis Sci. 2010; 51: 6270–6276.
Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008; 115: 1279–1285.
Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol. 2017; 95: 551–566.
Li SM, Li SY, Kang MT, et al. Near work related parameters and myopia in Chinese children: the Anyang Childhood Eye Study. PLoS One. 2015; 10: e0134514.
Ip JM, Saw S-M, Rose KA, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008; 49: 2903–2910.
Aldossari H, Suheimat M, Atchison DA, Schmid KL. Effect of accommodation on peripheral eye lengths of emmetropes and myopes. Optom Vis Sci. 2017; 94: 361–369.
Woodman EC, Read SA, Collins MJ, et al. Axial elongation following prolonged near work in myopes and emmetropes. Br J Ophthalmol. 2011; 95: 652–656.
Hua WJ, Jin JX, Wu XY, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt. 2015; 35: 252–262.
Read SA, Collins MJ, Vincent SJ. Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci. 2014; 91: 330–341.
Torii H, Ohnuma K, Kurihara T, Tsubota K, Negishi K. Violet light transmission is related to myopia progression in adult high myopia. Sci Rep. 2017; 7: 14523.
Williams KM, Bentham GC, Young IS, et al. Association between myopia, ultraviolet B radiation exposure, serum vitamin D concentrations, and genetic polymorphisms in vitamin D metabolic pathways in a multicountry European study. JAMA Ophthalmol. 2017; 135: 47–53.
Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012; 31: 622–660.
Dolgin E. The myopia boom. Nature. 2015; 519: 276–278.
Rose KA, French AN, Morgan IG. Environmental factors and myopia: paradoxes and prospects for prevention. Asia Pac J Ophthalmol (Phila). 2016; 5: 403–410.
Lam CSY, Goh WSH. The incidence of refractive errors among schoolchildren in Hong Kong and its relationship with the optical components. Clin Exp Optom. 1991; 74: 97–103.
Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008; 126: 527–530.
Lam CS-Y, Lam C-H, Cheng SC-K, Chan LY-L. Prevalence of myopia among Hong Kong Chinese schoolchildren: changes over two decades. Ophthalmic Physiol Opt. 2012; 32: 17–24.
Zylbermann R, Landau D, Berson D. The influence of study habits on myopia in Jewish children. J Pediatr Ophthalmol Strabismus. 1993; 30: 319–322.
Ben-Simon GJ, Peiss M, Anis E, Nakra T, Luski A, Spierer A. Spectacle use and reduced unaided vision in third grade students: a comparative study in different educational settings. Clin Exp Optom. 2004; 87: 175–179.
Kinge B, Midelfart A, Jacobsen G, Rystad J. The influence of near-work on development of myopia among university students. A three-year longitudinal study among engineering students in Norway. Acta Ophthalmol Scand. 2000; 78: 26–29.
Morgan IG, Rose KA. Myopia and international educational performance. Ophthalmic Physiol Opt. 2013; 33: 329–338.
Mountjoy E, Davies NM, Plotnikov D, et al. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ. 2018; 361:k2022.
Verhoeven VJM, Buitendijk GHS, Rivadeneira F, et al. Education influences the role of genetics in myopia. Eur J Epidemiol. 2013; 28: 973–980.
Gwiazda J, Bauer J, Thorn F, Held R. A dynamic relationship between myopia and blur Driven accommodation in school-aged children. Vision Res. 1995; 35: 1299–1304.
Nakatsuka C, Hasebe S, Nonaka F, Ohtsuki H. Accommodative lag under habitual seeing conditions: comparison between myopic and emmetropic children. Jap J Ophthalmol. 2005; 49: 189–194.
Drobe B, de Saint-André R. The pre-myopic syndrome. Ophthalmic Physiol Opt. 1995; 15: 375–378.
Allen PM, O’Leary DJ. Accommodation functions: co-dependency and relationship to refractive error. Vision Res. 2006; 46: 491–505.
Pandian A, Sankaridurg PR, Naduvilath T, et al. Accommodative facility in eyes with and without myopia. Invest Ophthalmol Vis Sci. 2006; 47: 4725–4731.
Gwiazda J, Grice K, Thorn F. Response AC/A ratios are elevated in myopic children. Ophthalmic Physiol Opt. 1999; 19: 173–179.
Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci. 2005; 82: 273–278.
Mutti DO, Jones LA, Moeschberger ML, Zadnik K. AC/A ratio, age, and refractive error in children. Invest Ophthalmol Vis Sci. 2000; 41: 2469–2478.
Gwiazda J, Hyman L, Hussein M, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003; 44: 1492–1500.
Rosenfield M, Desai R, Portello JK. Do progressing myopes show reduced accommodative responses? Optom Vis Sci. 2002; 79: 268–273.
Berntsen DA, Sinnott LT, Mutti DO, Zadnik K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest Ophthalmol Vis Sci. 2012; 53: 640–649.
Berntsen DA, Sinnott LT, Mutti DO, Zadnik K. Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction. Vision Res. 2011; 51: 1039–1046.
Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007; 48: 3524–3532.
Ramamurthy D, Lin Chua SY, Saw SM. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom. 2015; 98: 497–506.
Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci. 2005; 82: 273–278.
Tideman JW, Snabel MC, Tedja MS, et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol. 2016; 134: 1355–1363.
Dave T, Ruston D. Current trends in modern orthokeratology. Ophthalmic Physiol Opt. 1998; 18: 224–233.
Smith ELIII, Hung LF, Arumugam B. Visual regulation of refractive development: insights from animal studies. Eye. 2014; 28: 180–188.
Stone RA, Pardue MT, Iuvone PM, Khurana TS. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res. 2013; 114: 35–47.
Donovan L, Sankaridurg P, Ho A, Naduvilath T, Smith ELIII, Holden BA. Myopia progression rates in urban children wearing single-vision spectacles. Optom Vis Sci. 2012; 89: 27–32.
Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012; 53: 3913–3919.
Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012; 53: 5060–5065.
Cho P, Cheung SW. Retardation of Myopia in Orthokeratology (ROMIO) Study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012; 53: 7077–7085.
Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009; 93: 1181–1185.
Anstice NS, Phillips JR. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology. 2011; 118: 1152–1161.
Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014; 98: 40–45.
Sankaridurg P, Holden B, Smith EIII, et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci. 2011; 52: 9362–9367.
Aller TA, Liu M, Wildsoet CF. Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci. 2016; 93: 344–352.
Cooper J, O’Connor B, Watanabe R, et al. Case series analysis of myopic progression control with a unique extended depth of focus multifocal contact lens. Eye Contact Lens. 2018; 44: e16–e24.
Rah MJ, Walline JJ, Jones-Jordan LA, et al. Vision specific quality of life of pediatric contact lens wearers. Optom Vis Sci. 2010; 87: 560–566.
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006; 113: 2285–2291.
Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012; 119: 347–354.
Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009; 116: 572–579.
Bullimore MA, Berntsen DA. Low Dose atropine for myopia control: considering all the data. JAMA Ophthalmol. 2018; 136: 303.
Cheng D, Schmid KL, Woo GC, Drobe B. Randomized trial of effect of bifocal and prismatic bifocal spectacles on myopic progression: two-year results. Arch Ophthalmol. 2010; 128: 12–19.
Gwiazda J, Hyman L, Hussein M, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003; 44: 1492–1500.
Bullimore MA, Sinnott LT, Jones-Jordan LA. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci. 2013; 90: 937–944.
Chalmers RL, Wagner H, Mitchell GL, et al. Age and other risk factors for corneal infiltrative and inflammatory events in young soft contact lens wearers from the Contact Lens Assessment in Youth (CLAY) study. Invest Ophthalmol Vis Sci. 2011; 52: 6690–6696.
Bullimore MA. The safety of soft contact lenses in children. Optom Vis Sci. 2017; 94: 638–646.
Gong CR, Troilo D, Richdale K. Accommodation and phoria in children wearing multifocal contact lenses. Optom Vision Sci. 2017; 94: 353–360.
Gifford K, Gifford P, Hendicott PL, Schmid KL. Near binocular visual function in young adult orthokeratology versus soft contact lens wearers. Cont Lens Anterior Eye. 2017; 40: 184–189.
Akorn, Inc. Atropine Sulfate Ophthalmic Solution, USP 1% (Package Insert). Available at: http://www.akorn.com/documents/catalog/package_inserts/17478-215-02.pdf. Accessed August 10, 2018.
Loughman J, Flitcroft DI. The acceptability and visual impact of 0.01% atropine in a Caucasian population. Br J Ophthalmol. 2016; 100: 1525–1529.
Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016; 123: 697–708.
U.S. Food & Drug Administration. Understanding Unapproved Use of Approved Drugs “Off Label”. Available at: https://www.fda.gov/forpatients/other/offlabel/default.htm. Accessed August 10, 2018.
The College of Optomertrists. Optometrists’ Formulary. Available at: https://www.college-optometrists.org/guidance/optometrists-formulary.html. Accessed September 24, 2018.
European Commission. Off-Label Use of Medicinal Products. Available at: https://ec.europa.eu/health/sites/health/files/files/committee/stamp/stamp6_off_label_use_background.pdf. Accessed August 10, 2018.
Australian Prescriber. Off-Label Prescribing. Available at: https://www.nps.org.au/australian-prescriber/articles/off-label-prescribing-6. Accessed August 10, 2018.
The Best Practice Advocacy Centre New Zealand. Upfront: Unapproved Medicines and Unapproved Uses of Medicines: Keeping Prescribers and Patients Safe. Available at: https://bpac.org.nz/bpj/2013/march/unapproved-medicines.aspx. Accessed August 10, 2018.
Health Canada. Medical Devices Active Licence Listing (MDALL). Active License Search: MiSight. Available at: https://health-products.canada.ca/mdall-limh/. Accessed September 24, 2018.
Lam C. Diagnostic drugs. In: Rosenfield ML, Logan NS, eds. Optometry: Science, Techniques and Clinical Management. Edinburgh: Butterworth-Heinemann; 2009: 105–120.
Chang L, Pan CW, Ohno-Matsui K, et al. Myopia-related fundus changes in Singapore adults with high myopia. Am J Ophthalmol. 2013; 155: 991–999.
Evans B. Binocular vision assessment. In: Rosenfield M, NS, Logan Edwards K, eds. Optometry: Science, Techniques and Clinical Management. Edinburgh: Butterworth-Heinemann; 2009: 241–256.
Rosenfield M. Clinical assessment of accommodation. In: Rosenfield M, Logan NS, eds. Optometry: Science, Techniques and Clinical Management. Edinburgh: Butterworth-Heinemann; 2009: 229–240.
Elliot D. Assessment of binocular vision and accommodation. In: Clinical Procedures in Primary Eye Care. Elsevier Health Sciences; 2014: 147–208.
Gifford K, Gifford P, Hendicott P, Schmid K. Binocular visual function in orthokeratology contact lens wear for myopia. Invest Ophthalmol Vis Sci. 2017; 58:ARVO E-Abstract 2389.
Gwiazda J, Bauer J, Thorn F, Held R. A dynamic relationship between myopia and blur Driven accommodation in school-aged children. Vision Res. 1995; 35: 1299–1304.
Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci. 1993; 34: 690–694.
Gwiazda JE, Hyman L, Norton TT, et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest Ophthalmol Vis Sci. 2004; 45: 2143–2151.
Mutti DO, Jones LA, Moeschberger ML, Zadnik K. AC/A ratio, age, and refractive error in children. Invest Ophthalmol Vis Sci. 2000; 41: 2469–2478.
Mutti DO, Mitchell GL, Hayes JR, et al. Accommodative lag before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2006; 47: 837–846.
Nakatsuka C, Hasebe S, Nonaka F, Ohtsuki H. Accommodative lag under habitual seeing conditions: comparison between myopic and emmetropic children. Jpn J Ophthalmol. 2005; 49: 189–194.
Cheng D, Woo GC, Drobe B, Schmid KL. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014; 132: 258–264.
Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric Eye Disease Investigator Group. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Invest Ophthalmol Vis Sci. 2011; 52: 2749–2757.
Tarrant J, Severson H, Wildsoet CF. Accommodation in emmetropic and myopic young adults wearing bifocal soft contact lenses. Ophthalmic Physiol Opt. 2008; 28: 62–72.
Tarrant J, Roorda A, Wildsoet C. Determining the accommodative response from wavefront aberrations. J Vis. 2010; 10 (5): 4.
Kang P, Wildsoet CF. Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults. Cont Lens Anterior Eye. 2016; 39: 133–140.
Felipe-Marquez G, Nombela-Palomo M, Cacho I, Nieto-Bona A. Accommodative changes produced in response to overnight orthokeratology. Graefe’s Arch Clin Exp Ophthalmol. 2015; 253: 619–626.
Brand P. The effect of orthokeratology on accommodative and convergence function: a clinic based pilot study. Optom Vis Perf. 2013; 1: 162–167.
McClelland JF, Saunders KJ. The repeatability and validity of dynamic retinoscopy in assessing the accommodative response. Ophthalmic Physiol Opt. 2003; 23: 243–250.
McClelland JF, Saunders KJ. Accommodative lag using dynamic retinoscopy: age norms for school-age children. Optom Vis Sci. 2004; 81: 929–933.
Harb E, Thorn F, Troilo D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vis Res. 2006; 46: 2581–2592.
Gong CR, Troilo D, Richdale K. Accommodation and phoria in children wearing multifocal contact lenses. Optom Vis Sci. 2017; 94: 353–360.
Pandian A, Sankaridurg PR, Naduvilath T, et al. Accommodative facility in eyes with and without myopia. Invest Ophthalmol Vis Sci. 2006; 47: 4725–4731.
Felipe-Marquez G, Nombela-Palomo M, Palomo-Alvarez C, Cacho I, Nieto-Bona A. Binocular function changes produced in response to overnight orthokeratology. Graefe’s Arch Clin Exp Ophthalmol. 2017; 255: 179–188.
Gwiazda J, Grice K, Thorn F. Response AC/A ratios are elevated in myopic children. Ophthalmic Physiol Opt. 1999; 19: 173–179.
Arita R, Itoh K, Inoue K, Kuchiba A, Yamaguchi T, Amano S. Contact lens wear is associated with decrease of meibomian glands. Ophthalmology. 2009; 116: 379–384.
Mizoguchi T, Arita R, Fukuoka S, Morishige N. Morphology and function of meibomian glands and other tear film parameters in junior high school students. Cornea. 2017; 36: 922–926.
Fonn D. Dryness with contact lenses and dry eye: are they the same or different? Eye Contact Lens. 2009; 35: 219.
Chalmers R. Overview of factors that affect comfort with modern soft contact lenses. Cont Lens Anterior Eye. 2014; 37: 65–76.
Richdale K, Lam DY, Mitchell GL, et al. Geographic and temporal risk factors for interruptions to soft contact lens wear in young wearers. Cont Lens Anterior Eye. 2013; 36: 253–258.
Nichols JJ, Jones L, Nelson JD, et al. The TFOS international workshop on contact lens discomfort: introduction. Invest Ophthalmol Vis Sci. 2013; 54: TFOS1–TFOS6.
Tomlinson A, Bron AJ, Korb DR, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci. 2011; 52: 2006–2049.
Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010; 29: 312–334.
Datta S, Baudouin C, Brignole-Baudouin F, Denoyer A, Cortopassi GA. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells. Invest Ophthalmol Vis Sci. 2017; 58: 2406–2412.
World Health Organization. The Impact of Myopia and High Myopia. Available at: https://www.who.int/blindness/causes/MyopiaReportforWeb.pdf. Accessed August 10, 2018.
Wu Y, Li H, Tang Y, Yan X. Morphological evaluation of meibomian glands in children and adolescents using noncontact infrared meibography. J Pediatr Ophthalmol Strabismus. 2017; 54: 78–83.
Cardona G, Garcia C, Seres C, Vilaseca M, Gispets J. Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Curr Eye Res. 2011; 36: 190–197.
Moon JH, Lee MY, Moon NJ. Association between video display terminal use and dry eye disease in school children. J Pediatr Ophthalmol Strabismus. 2014; 51: 87–92.
Moon JH, Kim KW, Moon NJ. Smartphone use is a risk factor for pediatric dry eye disease according to region and age: a case control study. BMC Ophthalmol. 2016; 16: 188.
Benedetto S, Drai-Zerbib V, Pedrotti M, Tissier G, Baccino T. E-readers and visual fatigue. PLoS One. 2013; 8: e83676.
Craig JP, Nelson JD, Azar DT, et al. TFOS DEWS II Report Executive Summary. Ocul Surf. 2017; 15: 802–812.
Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica. 1971; 163: 209–215.
Chen X, Sankaridurg P, Donovan L, et al. Characteristics of peripheral refractive errors of myopic and non-myopic Chinese eyes. Vis Res. 2010; 50: 31–35.
Sng CC, Lin XY, Gazzard G, et al. Peripheral refraction and refractive error in singapore chinese children. Invest Ophthalmol Vis Sci. 2011; 52: 1181–1190.
Ehsaei A, Mallen EA, Chisholm CM, Pacey IE. Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes. Invest Ophthalmol Vis Sci. 2011; 52: 7574–7585.
Atchison DA, Li SM, Li H, et al. Relative peripheral hyperopia does not predict development and progression of myopia in children. Invest Ophthalmol Vis Sci. 2015; 56: 6162–6170.
Lee TT, Cho P. Relative peripheral refraction in children: twelve-month changes in eyes with different ametropias. Ophthalmic Physiol Opt. 2013; 33: 283–293.
Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011; 88: 476–482.
Queirós A, González-Méijome JM, Jorge J, Villa-Collar C, Gutiérrez AR. Peripheral refraction in myopic patients after orthokeratology. Optom Vis Sci. 2010; 87: 323–329.
Gifford P, Gifford K, Hendicott P, Schmid K. Relative peripheral refraction and binocular vision changes in myopic orthokeratology. Invest Ophthalmol Vis Sci. 2017; 58 :ARVO E-Abstract 2390.
Hiraoka T, Kotsuka J, Kakita T, Okamoto F, Oshika T. Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Sci Rep. 2017; 7: 7876.
Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R, Suzaki A. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology. Clin Exp Optom. 2015; 98: 534–540.
Chen Z, Niu L, Xue F, et al. Impact of pupil diameter on axial growth in orthokeratology. Optom Vis Sci. 2012; 89: 1636–1640.
Read SA, Alonso-Caneiro D, Vincent SJ, Collins MJ. Longitudinal changes in choroidal thickness and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015; 56: 3103–3112.
Wang D, Chun RK, Liu M, et al. Optical defocus rapidly changes choroidal thickness in schoolchildren. PLoS One. 2016; 11: e0161535.
Li Z, Cui D, Hu Y, Ao S, Zeng J, Yang X. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Cont Lens Anterior Eye. 2017; 40: 417–423.
Dirani M, Tong L, Gazzard G, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009; 93: 997–1000.
Onal S, Toker E, Akingol Z, et al. Refractive errors of medical students in Turkey: one year follow-up of refraction and biometry. Optom Vis Sci. 2007; 84: 175–180.
Parssinen O, Lyyra AL. Myopia and myopic progression among schoolchildren: a three-year follow-up study. Invest Ophthalmol Vis Sci. 1993; 34: 2794–2802.
Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008; 115: 1279–1285.
Guo Y, Liu LJ, Xu L, et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology. 2013; 120: 277–283.
Alvarez AA, Wildsoet CF. Quantifying light exposure patterns in young adult students. J Mod Opt. 2013; 60: 1200–1208.
Dharani R, Lee CF, Theng ZX, et al. Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children. Eye. 2012; 26: 911–918.
Schmid KL, Leyden K, Chiu YH, et al. Assessment of daily light and ultraviolet exposure in young adults. Optom Vis Sci. 2013; 90: 148–155.
Ostrin LA. Objectively measured light exposure in emmetropic and myopic adults. Optom Vis Sci. 2017; 94: 229–238.
Scheuermaier K, Laffan AM, Duffy JF. Light exposure patterns in healthy older and young adults. J Biol Rhythms. 2010; 25: 113–122.
Dharani R, Lee CF, Finkelstein EA, Saw SM. Response to Mahroo et al. Eye. 2013; 27: 991.
Mahroo OA, Gavin EA, Williams KM, De Smit E, Hammond CJ, Morrison DA. Potential effect of ‘cut-off intensity’ on correlation between light meter measurements and time outdoors. Eye. 2013; 27: 990–991.
Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015; 56: 6779–6787.
Loh KL, Lu Q, Tan D, Chia A. Risk factors for progressive myopia in the atropine therapy for myopia study. Am J Ophthalmol. 2015; 159: 945–949.
Hsu CC, Huang N, Lin PY, et al. Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Br J Ophthalmol. 2017; 101: 1611–1617.
Saw SM, Nieto FJ, Katz J, Schein OD, Levy B, Chew SJ. Factors related to the progression of myopia in singaporean children. Optom Vis Sci. 2000; 77: 549–554.
Gwiazda J, Deng L, Manny R, Norton TT. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci. 2014; 55: 752–758.
Williams KM, Hysi PG, Nag A, Yonova Doing E, Venturini C, Hammond CJ. Age of myopia onset in a British population-based twin cohort. Ophthalmic Physiol Opt 2013; 33: 339–345.
Iribarren R, Cortinez MF, Chiappe JP. Age of first distance prescription and final myopic refractive error. Ophthalmic Epidemiol. 2009; 16: 84–89.
Richdale K, Berntsen DA, Mack CJ, Merchea MM, Barr JT. Visual acuity with spherical and toric soft contact lenses in low- to moderate-astigmatic eyes. Optom Vis Sci. 2007; 84: 969–975.
Swarbrick HA. Orthokeratology review and update. Clin Exp Optom. 2006; 89: 124–143.
Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE Study). Invest Ophthalmol Vis Sci. 2013; 54: 6510–6517.
Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci. 2013; 90: 530–539.
Cho P, Cheung SW. Retardation of Myopia in Orthokeratology (ROMIO) Study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012; 53: 7077–7085.
Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012; 53: 3913–3919.
Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011; 52: 2170–2174.
Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005; 30: 71–80.
Cheng D, Woo GC, Drobe B, Schmid KL. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014; 132: 258–264.
Zhu M, Feng H, Zhu J, Qu X. The impact of amplitude of accommodation on controlling the development of myopia in orthokeratology. Zhonghua Yan Ke Za Zhi. 2014; 50: 14–19.
Li SM, Wu SS, Kang MT, et al. Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci. 2014; 91: 342–350.
Wolffsohn JS, Calossi A, Cho P, et al. Global trends in myopia management attitudes and strategies in clinical practice. Cont Lens Anterior Eye. 2016; 39: 106–116.
Walline JJ, Greiner KL, McVey ME, Jones-Jordan LA. Multifocal contact lens myopia control. Optom Vis Sci. 2013; 90: 1207–1214.
Sankaridurg P, Holden B, Smith EIII, et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci. 2011; 52: 9362–9367.
Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014; 98: 40–45.
Fujikado T, Ninomiya S, Kobayashi T, Suzaki A, Nakada M, Nishida K. Effect of low-addition soft contact lenses with decentered optical design on myopia progression in children: a pilot study. Clin Ophthalmol. 2014; 8: 1947–1956.
Cheng X, Xu J, Chehab K, Exford J, Brennan N. Soft contact lenses with positive spherical aberration for myopia control. Optom Vis Sci. 2016; 93: 353–366.
Paune J, Morales H, Armengol J, Quevedo L, Faria-Ribeiro M, Gonzalez-Meijome JM. Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial. Biomed Res Int. 2015; 2015: 507572.
Paune J, Queiros A, Quevedo L, Neves H, Lopes-Ferreira D, Gonzalez-Meijome JM. Peripheral myopization and visual performance with experimental rigid gas permeable and soft contact lens design. Cont Lens Anterior Eye. 2014; 37: 455–460.
Gifford P, Gifford KL. The future of myopia control contact lenses. Optom Vis Sci. 2016; 93: 336–343.
Sankaridurg P. Contact lenses to slow progression of myopia. Clin Exp Optom. 2017; 100: 432–437.
Berntsen DA, Kramer CE. Peripheral defocus with spherical and multifocal soft contact lenses. Optom Vis Sci. 2013; 90: 1215–1224.
Ticak A, Walline JJ. Peripheral optics with bifocal soft and corneal reshaping contact lenses. Optom Vis Sci. 2013; 90: 3–8.
Kang P, Fan Y, Oh K, Trac K, Zhang F, Swarbrick HA. The effect of multifocal soft contact lenses on peripheral refraction. Optom Vis Sci. 2013; 90: 658–666.
Lopes-Ferreira D, Ribeiro C, Maia R, et al. Peripheral myopization using a dominant design multifocal contact lens. J Optom. 2011; 4: 14–32.
Smith ELIII. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res. 2013; 114: 77–88.
Walline JJ, Gaume Giannoni A, Sinnott LT, et al. A randomized trial of soft multifocal contact lenses for myopia control: baseline data and methods. Optom Vis Sci. 2017; 94: 856–866.
Kang P, McAlinden C, Wildsoet CF. Effects of multifocal soft contact lenses used to slow myopia progression on quality of vision in young adults. Acta Ophthalmol. 2017; 95: e43–e53.
Bickle K, Walline J. Bifocal Lenses in Nearsighted Kids (BLINK) study. Optom Vis Sci. 2013; 90 . Abstract 130789.
Schulle KL, Berntsen DA, Sinnott LT, et al. Visual acuity and over-refraction in myopic children fitted with soft multifocal contact lenses. Optom Vis Sci. 2018; 95: 292–298.
Chung K, Mohidin N, O’Leary DJ. Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res. 2002; 42: 2555–2559.
Adler D, Millodot M. The possible effect of undercorrection on myopic progression in children. Clin Exp Optom. 2006; 89: 315–321.
Sun YY, Li SM, Li SY, et al. Effect of uncorrection versus full correction on myopia progression in 12-year-old children. Graefe’s Arch Clin Exp Ophthalmol. 2017; 255: 189–195.
Gwiazda J, Grice K, Held R, Thorn F, Bauer J. Insufficient accommodation and near esophoria: precursors or concomitants of juvenile-onset myopia? In: Tokoro T, ed. Myopia Updates. Tokyo: Springer; 1998; 92–97.
Edwards MH, Li RW-H, Lam CS-Y, Lew JK-F, Yu BS-Y. The Hong Kong progressive lens myopia control study: study design and main findings. Invest Ophthalmol Vis Sci. 2002; 43: 2852–2858.
Berntsen DA, Mutti DO, Zadnik K. Study of Theories about Myopia Progression (STAMP) design and baseline data. Optom Vis Sci. 2010; 87: 823–832
Hyman L, Gwiazda J, Marsh-Tootle WL, Norton TT, Hussein M. The Correction of Myopia Evaluation Trial (COMET): design and general baseline characteristics. Control Clin Trials. 2001; 22: 573–592.
Scheiman M, Wick B. Clinical Management of Binocular Vision: Heterophoric, Accommodative and Eye Movement Disorders. Philadephia: Lippincott Williams & Wilkins; 1994.
Sankaridurg P, Donovan L, Varnas S, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010; 87: 631–641.
Lam CS-Y, Tang WC, Lee RP, Chun RK, To CH. Myopia control with multi-segment myopic defocus (MSMD) spectacle lens: a randomised clinical trial. Ophthal Physiol Opt. 2017; 37: O017.
Guggenheim JA, Northstone K, McMahon G, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012; 53: 2856–2865.
He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA Ophthalmol. 2015; 314: 1142–1148.
Jones-Jordan LA, Sinnott LT, Cotter SA, et al. Time outdoors, visual activity, and myopia progression in juvenile-onset myopes. Invest Ophthalmol Vis Sci. 2012; 53: 7169–7175.
Norton TT, Amedo AO, Siegwart JTJr. Darkness causes myopia in visually experienced tree shrews. Invest Ophthalmol Vis Sci. 2006; 47: 4700–4707.
Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009; 50: 5348–5354.
Smith ELIII, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form Deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012; 53: 421–428.
Saw SM, Katz J, Schein OD, Chew SJ, Chan TK. Epidemiology of myopia. Epidemiol Rev. 1996; 18: 175–187.
Edwards MH. Do variations in normal nutrition play a role in the development of myopia? Optom Vis Sci. 1996; 73: 638–643.
Gardiner PA. The diet of growing myopes. Trans Ophthalmol Soc UK. 1956; 76: 171–180.
Lim LS, Gazzard G, Low YL, et al. Dietary factors, myopia, and axial dimensions in children. Ophthalmology. 2010; 117: 993–997.
Trier K, Munk Ribel-Madsen S, Cui D, Brogger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocular Biol Dis Informat. 2008; 1: 85–93.
Hong T, Flood V, Rochtchina E, Mitchell P, Russell J, Wang JJ. Adherence to dietary guidelines and the 10-year cumulative incidence of visual impairment: the Blue Mountains Eye Study. Am J Ophthalmol. 2014; 158: 302–308.
Wu YT, Willcox MD, Stapleton F. The effect of contact lens hygiene behavior on lens case contamination. Optom Vis Sci. 2015; 92: 167–174.
Lim CH, Carnt NA, Farook M, et al. Risk factors for contact lens-related microbial keratitis in Singapore. Eye. 2016; 30: 447–455.
Zimmerman AB, Richdale K, Mitchell GL, et al. Water exposure is a common risk behavior among soft and gas-permeable contact lens wearers. Cornea. 2017; 36: 995–1001.
Carnt N, Stapleton F. Strategies for the prevention of contact lens-related Acanthamoeba keratitis: a review. Ophthalmic Physiol Opt. 2016; 36: 77–92.
Morgan PB, Efron N, Brennan NA, Hill EA, Raynor MK, Tullo AB. Risk factors for the development of corneal infiltrative events associated with contact lens wear. Invest Ophthalmol Vis Sci. 2005; 46: 3136–3143.
Richdale K, Lam DY, Wagner H, et al. Case-control pilot study of soft contact lens wearers with corneal infiltrative events and healthy controls. Invest Ophthalmol Vis Sci. 2016; 57: 47–55.
Sorbara L, Zimmerman AB, Mitchell GL, et al. Multicenter testing of a risk assessment survey for soft contact lens wearers with adverse events: a contact lens assessment in youth study. Eye Cont Lens. 2016.
Wu YT, Willcox M, Zhu H, Stapleton F. Contact lens hygiene compliance and lens case contamination: A review. Cont Lens Anterior Eye. 2015; 38: 307–316.
Stapleton F, Edwards K, Keay L, et al. Risk factors for moderate and severe microbial keratitis in daily wear contact lens users. Ophthalmology. 2012; 119: 1516–1521.
Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. Microbial Keratitis Study Group. New Engl J Med. 1989; 321: 773–778.
Feghhi M, Mahmoudabadi AZ, Mehdinejad M. Evaluation of fungal and bacterial contaminations of patient-used ocular drops. Med Mycol. 2008; 46: 17–21.
Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016; 123: 391–399.
Berntsen DA, Schulle KL, Sinnott LT, Bickle KM, Group TBS. Visual acuity and over-refraction in myopic children fitted with soft multifocal contact lenses in the BLINK Study. Invest Ophthalmol Vis Sci. 2017; 58: ARVO E-Abstract 3052.
Wong HB, Machin D, Tan SB, Wong TY, Saw SM. Ocular component growth curves among Singaporean children with different refractive error status. Invest Ophthalmol Vis Sci. 2010; 51: 1341–1347.
French AN, Morgan IG, Burlutsky G, Mitchell P, Rose KA. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren. Ophthalmology. 2013; 120: 1482–1491.
Saw SM, Tong L, Chua WH, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005; 46: 51–57.
Aller TA. Clinical management of progressive myopia. Eye 2014; 28: 147–153.
Pineles SL, Kraker RT, VanderVeen DK, et al. Atropine for the prevention of myopia progression in children: a report by the American Academy of Ophthalmology. Ophthalmol. 2017; 124: 1857–1866.
Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R, Sugimoto K. Long-term efficacy of orthokeratology contact lens wear in controlling the progression of childhood myopia. Curr Eye Res. 2017; 42: 713–720.
Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000; 77: 395–401.
Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005; 46: 2317–2327.
Kinoshita N, Konno Y, Hamada N, Kakehashi A. Suppressive effect of combined treatment of orthokeratology and 0.01% atropine instillation on axial length elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2017; 58: ARVO E-Abstract 2386.
Verzhanskaya TY, Tarutta EP. Stabilizing effectiveness of orthokeratology and long-term minute-concentration atropine therapy in myopia [in Russian]. Vestn Oftalmol. 2017; 133: 43–48.
Polling JR, Kok RG, Tideman JW, Meskat B, Klaver CC. Effectiveness study of atropine for progressive myopia in Europeans. Eye (Lond). 2016; 30: 998–1004.
Cho P, Cheung SW. Discontinuation of orthokeratology on eyeball elongation (DOEE). Cont Lens Anterior Eye. 2017; 40: 82–87.
Goss DA, Winkler RL. Progression of myopia in youth: age of cessation. Am J Optom Physiol Opt. 1983; 60: 651–658.
Comet Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci. 2013; 54: 7871–7884.
Rahi JS, Cumberland PM, Peckham CS. Myopia over the lifecourse: prevalence and early life influences in the 1958 British birth cohort. Ophthalmology. 2011; 118: 797–804.
Zadnik K, Mutti DO. Refractive error changes in law students. Am J Optom Physiol Opt. 1987; 64: 558–561.
Kinge B, Midelfart A. Refractive errors among engineering students in Norway. Ophthalmic Epidemiol. 1994; 1: 5–13.
Lv L, Zhang Z. Pattern of myopia progression in Chinese medical students: a two-year follow-up study. Graefes Arch Clin Exp Ophthalmol. 2013; 251: 163–168.
Lim R, Mitchell P, Cumming RG. Refractive associations with cataract: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci. 1999; 40: 3021–3026.
Younan C, Mitchell P, Cumming RG, Rochtchina E, Wang JJ. Myopia and incident cataract and cataract surgery: the Blue Mountains eye study. Invest Ophthalmol Vis Sci. 2002; 43: 3625–3632.
Ponte F, Giuffre G, Giammanco R, Dardanoni G. Risk factors of ocular hypertension and glaucoma. The Casteldaccia Eye Study. Adv Ophthalmol. 1994; 85: 203–210.
Wong TY, Klein BEK, Klein R, Knudtson M, Lee KE. Refractive errors, intraocular pressure, and glaucoma in a white population11The authors have no proprietary interest in the products or devices mentioned herein. Ophthalmology. 2003; 110: 211–217.
Pierro L, Camesasca FI, Mischi M, Brancato R. Peripheral retinal changes and axial myopia. Retina. 1992; 12: 12–17.
Yura T. The relationship between the types of axial elongation and the prevalence of lattice degeneration of the retina. Acta Ophthalmol Scand. 1998; 76: 90–95.
Rosner M, Treister G, Belkin M. Epidemiology of retinal detachment in childhood and adolescence. J Pediatr Ophthalmol Strabismus. 1987; 24: 42–44.
Logan NS, Gilmartin B, Marr JE, Stevenson MR, Ainsworth JR. Community-based study of the association of high myopia in children with ocular and systemic disease. Optom Vis Sci. 2004; 81: 11–13.
Bansal AS, Hubbard GBIII. Peripheral retinal findings in highly myopic children < or =10 years of age. Retina. 2010; 30: S15–S19.
Cheng SC, Lam CS, Yap MK. Prevalence of myopia-related retinal changes among 12-18 year old Hong Kong Chinese high myopes. Ophthalmic Physiol Opt. 2013; 33: 652–660.
Smith ELIII, Hung L-F, Huang J, Arumugam B. Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci. 2013; 90: 1176–1186.
Berntsen DA, Kramer CE. Peripheral defocus with spherical and multifocal soft contact lenses. Optom Vis Sci. 2013; 90: 1215–1224.
Kang P, Fan Y, Oh K, Trac K, Zhang F, Swarbrick HA. The effect of multifocal soft contact lenses on peripheral refraction. Optom Vis Sci. 2013; 90: 658–666.
Marcotte-Collard R, Simard P, Michaud L. Analysis of two orthokeratology lens designs and comparison of their optical effects on the cornea. Eye Contact Lens. 2018; 44: 322–329.
Trier K, Munk Ribel-Madsen S, Cui D, Brøgger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor. 2008; 1: 85–93.
Trier K, Olsen EB, Kobayashi T, Ribel-Madsen SM. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine. Br J Ophthalmol. 1999; 83: 1370–1375.
Cui D, Trier K, Zeng J, et al. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol. 2011; 89: 328–334.
Hung LF, Arumugam B, Ostrin L, et al. The adenosine receptor antagonist, 7-methylxanthine, alters emmetropizing responses in infant macaques. Invest Ophthalmol Vis Sci. 2018; 59: 472–486.
Arumugam B, Hung LF, Jong M, Ostrin LA, Smith ELIII. Topically applied caffeine, a non-selective adenosine antagonist, alters emmetropizing responses in infant monkeys. Ophthal Physiol Opt. 2017; 37:O025.
Hu H, Zhao G, Wu R, Zhong H, Fang M, Deng H. Axial length/corneal radius of curvature ratio assessment of posterior sclera reinforcement for pathologic myopia. Ophthalmologica. 2018; 239: 128–132.
Wollensak G, Iomdina E, Dittert DD, Salamatina O, Stoltenburg G. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Scand. 2005; 83: 477–482.
Zhang M, Zou Y, Zhang F, Zhang X, Wang M. Efficacy of blue-light cross-linking on human scleral reinforcement. Optom Vis Sci. 2015; 92: 873–878.
Garcia MB, Jha AK, Healy KE, Wildsoet CF. A bioengineering approach to myopia control tested in a guinea pig model. Invest Ophthalmol Vis Sci. 2017; 58: 1875–1886.
Ward B, Tarutta EP, Mayer MJ. The efficacy and safety of posterior pole buckles in the control of progressive high myopia. Eye. 2009; 23: 2169–2174.
Ward B. Degenerative myopia: myopic macular schisis and the posterior pole buckle. Retina. 2013; 33: 224–231.
Nickla DL, Jordan K, Yang J, Totonelly K. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of day of exposure. Exp Eye Res. 2017; 161: 132–142.
Ayaki M, Torii H, Tsubota K, Negishi K. Decreased sleep quality in high myopia children. Sci Rep. 2016; 6: 33902.
Abbott KS, Queener HM, Ostrin LA. The ipRGC Driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018; 95: 323–331.
Jee D, Morgan IG, Kim EC. Inverse relationship between sleep duration and myopia. Acta Ophthalmol. 2016; 94: e204–e210.
Kearney S, O’Donoghue L, Pourshahidi LK, Cobice D, Saunders KJ. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol Opt. 2017; 37: 557–567.
Rucker F, Britton S, Spatcher M, Hanowsky S. Blue light protects against temporal frequency sensitive refractive changes. Invest Ophthalmol Vis Sci. 2015; 56: 6121–6131.

Group 2

1    Goss, D. A. & Jackson, T. W. Clinical findings before the onset of myopia in youth: 3. Heterophoria. Optom Vis Sci 73, 269-278 (1996).
2    Thorn, F., Gwiazda, J. & Held, R. Myopia progression is specified by a double exponential growth function. Optom Vis Sci 82, 286-297 (2005).
3    Mutti, D. O. et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 48, 2510-2519, doi:10.1167/iovs.06-0562 (2007).
4    Xiang, F., He, M. & Morgan, I. G. Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children. Ophthalmology 119, 1478-1484, doi:10.1016/j.ophtha.2012.01.017 (2012).
5    Berntsen, D. A., Mutti, D. O. & Zadnik, K. Study of Theories about Myopia Progression (STAMP) design and baseline data. Optom Vis Sci 87, 823-832, doi:10.1097/OPX.0b013e3181f6f776 (2010).
6    Mutti, D. O. et al. The Response AC/A Ratio Before and After the Onset of Myopia. Invest Ophthalmol Vis Sci 58, 1594-1602, doi:10.1167/iovs.16-19093 (2017).
7    Rudnicka, A. R. et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol 100, 882-890, doi:10.1136/bjophthalmol-2015-307724 (2016).
8    Rose, K. A. et al. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Archives of Ophthalmology 126, 527-530, doi:10.1001/archopht.126.4.527 (2008).
9    Ramamurthy, D., Lin Chua, S. Y. & Saw, S. M. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom 98, 497-506, doi:10.1111/cxo.12346 (2015).
10    Xiong, S. et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol 95, 551-566, doi:10.1111/aos.13403 (2017).
11    Wu, P. C. et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology 125, 1239-1250, doi:10.1016/j.ophtha.2017.12.011 (2018).
12    Flitcroft, D. I. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Progress in retinal and eye research 31, 622-660, doi:10.1016/j.preteyeres.2012.06.004 (2012).
13    Ngo, C., Saw, S. M., Dharani, R. & Flitcroft, I. Does sunlight (bright lights) explain the protective effects of outdoor activity against myopia? Ophthalmic Physiol Opt 33, 368-372, doi:10.1111/opo.12051 (2013).
14    Hsu, C. C. et al. Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Br J Ophthalmol 101, 1611-1617, doi:10.1136/bjophthalmol-2016-309299 (2017).
15    Guo, Y. et al. Outdoor activity and myopia progression in 4-year follow-up of Chinese primary school children: The Beijing Children Eye Study. PLoS One 12, e0175921, doi:10.1371/journal.pone.0175921 (2017).
16    Lee, Y. Y., Lo, C. T., Sheu, S. J. & Yin, L. T. Risk factors for and progression of myopia in young Taiwanese men. Ophthalmic Epidemiol 22, 66-73, doi:10.3109/09286586.2014.988874 (2015).
17    Oner, V., Bulut, A., Oruc, Y. & Ozgur, G. Influence of indoor and outdoor activities on progression of myopia during puberty. Int Ophthalmol 36, 121-125, doi:10.1007/s10792-015-0091-5 (2016).
18    Saxena, R. et al. Incidence and progression of myopia and associated factors in urban school children in Delhi: The North India Myopia Study (NIM Study). PLoS One 12, e0189774, doi:10.1371/journal.pone.0189774 (2017).
19    Huang, H. M., Chang, D. S. & Wu, P. C. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS One 10, e0140419, doi:10.1371/journal.pone.0140419 (2015).
20    Zadnik, K. et al. Prediction of Juvenile-Onset Myopia. JAMA Ophthalmology 133, 683-689, doi:10.1001/jamaophthalmol.2015.0471 (2015).
21    de Jong, P. Myopia: its historical contexts. Br J Ophthalmol 102, 1021-1027, doi:10.1136/bjophthalmol-2017-311625 (2018).
22    Gwiazda, J., Thorn, F. & Held, R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci 82, 273-278 (2005).
23    Goss, D. A. U., E.F. Effectiveness of bifocal control of childhood myopia progression as a function of near point phoria and binocular cross-cylinder. Journal of Optometry and Visual Development 26, 12-17 (1995).
24    Berntsen, D. A., Sinnott, L. T., Mutti, D. O. & Zadnik, K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest Ophthalmol Vis Sci 53, 640-649, doi:10.1167/iovs.11-7769 (2012).
25    Gwiazda, J., Chandler, DL, Cotter SA, Everett DF, Hyman L, Kaminski BM, et al. Progressive-Addition Lenses versus Single-Vision Lenses for Slowing Progression of Myopia in Children with High Accommodative Lag and Near Esophoria. Invest Ophthalmol Vis Sci 52, 2749-2757, doi:10.1167/iovs.10-6631 (2011).
26    Gwiazda, J. et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 44, 1492-1500 (2003).
27    Goss, D. A. & Grosvenor, T. Rates of childhood myopia progression with bifocals as a function of nearpoint phoria: consistency of three studies. Optom Vis Sci 67, 637-640 (1990).
28    Aller, T. A., Liu, M. & Wildsoet, C. F. Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial. Optom Vis Sci 93, 344-352, doi:10.1097/OPX.0000000000000808 (2016).
29    Chung, K., Mohidin, N. & O’Leary, D. J. Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res 42, 2555-2559 (2002).
30    Adler, D. & Millodot, M. The possible effect of undercorrection on myopic progression in children. Clin Exp Optom 89, 315-321, doi:10.1111/j.1444-0938.2006.00055.x (2006).
31    Sun, Y. Y. et al. Effect of uncorrection versus full correction on myopia progression in 12-year-old children. Graefes Arch Clin Exp Ophthalmol 255, 189-195, doi:10.1007/s00417-016-3529-1 (2017).
32    Chua, W. H. et al. Atropine for the treatment of childhood myopia. Ophthalmology 113, 2285-2291, doi:10.1016/j.ophtha.2006.05.062 (2006).
33    Galvis, V. et al. Topical Atropine in the Control of Myopia. Med Hypothesis Discov Innov Ophthalmol 5, 78-88 (2016).
34    Galvis, V., Tello, A., Parra, M. M., Rodriguez, C. J. & Blanco, O. Re: Chia et al.: Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops (Ophthalmology 2016;123:391-9). Ophthalmology 123, e40-41, doi:10.1016/j.ophtha.2015.12.037 (2016).
35    Gimbel, H. V. The control of myopia with atropine. Can J Ophthalmol 8, 527-532 (1973).
36    Gong, Q. et al. Efficacy and Adverse Effects of Atropine in Childhood Myopia: A Meta-analysis. JAMA Ophthalmology 135, 624-630, doi:10.1001/jamaophthalmol.2017.1091 (2017).
37    Pineles, S. L. et al. Atropine for the Prevention of Myopia Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology, doi:10.1016/j.ophtha.2017.05.032 (2017).
38    Tran, H. D. M. et al. A Review of Myopia Control with Atropine. J Ocul Pharmacol Ther 34, 374-379, doi:10.1089/jop.2017.0144 (2018).
39    Yam, J. C. et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 126, 113-124, doi:10.1016/j.ophtha.2018.05.029 (2019).
40    Miller, R. R., Olson, H. G., Amsterdam, E. A. & Mason, D. T. Propranolol-withdrawal rebound phenomenon. Exacerbation of coronary events after abrupt cessation of antianginal therapy. N Engl J Med 293, 416-418, doi:10.1056/NEJM197508282930902 (1975).
41    Karachalios, G. N. et al. Withdrawal syndrome following cessation of antihypertensive drug therapy. Int J Clin Pract 59, 562-570, doi:10.1111/j.1368-5031.2005.00520.x (2005).
42    Chia, A., Lu, Q. S. & Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 123, 391-399, doi:10.1016/j.ophtha.2015.07.004 (2016).
43    Wildsoet, C. Neural pathways subserving negative lens-induced emmetropization in chicks–insights from selective lesions of the optic nerve and ciliary nerve. Current Eye Research 27, 371-385 (2003).
44    Chiang, S. T., Chen, T. L. & Phillips, J. R. Effect of Optical Defocus on Choroidal Thickness in Healthy Adults With Presbyopia. Invest Ophthalmol Vis Sci 59, 5188-5193, doi:10.1167/iovs.18-24815 (2018).
45    Khanal, S., Turnbull, P. R. K., Lee, N. & Phillips, J. R. The Effect of Atropine on Human Global Flash mfERG Responses to Retinal Defocus.  Invest Ophthalmol Vis Sci  60, 218-225, doi:10.1167/iovs.18-24600 (2019).
46    Chen, Z. et al. Adjunctive effect of orthokeratology and low dose atropine on axial elongation in fast-progressing myopic children-A preliminary retrospective study. Cont Lens Anterior Eye, doi:10.1016/j.clae.2018.10.026 (2018).
47    Kinoshita, N., Konno, Y., Hamada, N. & Kakehashi, A. Suppressive effect of combined treatment of orthokeratology and 0.01% atropine instillation on axial length elongation in childhood myopia. Invest Ophthalmol Vis Sci  58, 2386-2386 (2017).
48    Kinoshita, N. et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Jpn J Ophthalmol 62, 544-553, doi:10.1007/s10384-018-0608-3 (2018).
49    Huang, J. et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 123, 697-708, doi:10.1016/j.ophtha.2015.11.010 (2016).
50    Si, J. K. et al. Orthokeratology for Myopia Control: A Meta-analysis. Optom Vis Sci 92, 252-257, doi:10.1097/OPX.0000000000000505 (2015).
51    Charm, J. & Cho, P. High myopia-partial reduction orthokeratology (HM-PRO): study design. Cont Lens Anterior Eye 36, 164-170, doi:10.1016/j.clae.2013.02.012 (2013).
52    Cho, P., Cheung, S. W. & Edwards, M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Current Eye Research 30, 71-80 (2005).
53    Fu, A. C. et al. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology. Cont Lens Anterior Eye 39, 62-66, doi:10.1016/j.clae.2015.07.006 (2016).
54    Bullimore, M. A., Sinnott, L. T. & Jones-Jordan, L. A. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 90, 937-944, doi:10.1097/OPX.0b013e31829cac92 (2013).
55    Anstice, N. S. & Phillips, J. R. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118, 1152-1161, doi:10.1016/j.ophtha.2010.10.035 (2011).
56    Lam, C. S., Tang, W. C., Tse, D. Y., Tang, Y. Y. & To, C. H. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol 98, 40-45, doi:10.1136/bjophthalmol-2013-303914 (2014).
57    Sankaridurg, P. et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci 52, 9362-9367, doi:10.1167/iovs.11-7260 (2011).
58    Cooper, J. et al. Case Series Analysis of Myopic Progression Control With a Unique Extended Depth of Focus Multifocal Contact Lens. Eye Contact Lens 44, e16-e24, doi:10.1097/ICL.0000000000000440 (2018).